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Heating Conditions in Orbit

• Large variations in thermal 

environment but static 

radiative surface properties

• Current Solutions

– Multi-Layer Insulation

– Heaters

– Spectrally-selective surfaces

– Louvers
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Variable Emissivity Devices

• Surfaces capable of changing emissivity and absorptivity 

in real time

• Current variable emissivity devices rely on various 

mechanisms to vary emissivity

– Modification of surface chemistry

– Modification of heat transfer mode
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What about geometry modifications ? 



The Cavity Effect

4TFAWS 2015 – August 3-7, 2015 – Silver Spring, MD

• Reflections inside a cavity create an increase in apparent 

surface properties
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Apparent Surface Behavior

Real World Implementation?
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Sparrow and Cess, Radiation Heat Transfer, 1978



Origami and the Cavity Effect

• 1D actuation manipulates cavity angle

• Simple to advanced fold patterns exist

• Models exist to describe accordion fold
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Image Credit: Jackson. Folding Techniques for Designers



Purpose of this Work

• Determine the following as a function of geometry:

– Apparent absorptivity

– Apparent emissivity

– Rate of net radiative heat exchange with the surroundings

• Methods must apply to any origami fold pattern.
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Apparent Absorptivity



Apparent Absorptivity Energy Balance

• Energy Balance

• Governing Equation

– Non-dimensionalized

– Overall heat transfer 

coefficient
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Heat Loss Characterization

• U(t) characterizes conductive, convective and radiative 

heat losses
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Mass Compensation

• Volume Ratio

– Accounts for increasing mass in control volume as 

sample is actuated

– Different origami folds would have different ratios
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Inverse Model Solutions

• Direct Method

– The governing equation was rearranged

• Integrating Factor Method

– An integrating factor was used to solve the differential 

equation
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Steady State Model

• The steady state energy balance gives absorptivity as a 

function of G, θSS and Umax
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• All solutions require experimental 

temperature measurements



Experimental Setup
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Experimental Results (Flat Sample)

• Absorptivity results with respect to time for three methods
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Flat Sample Validation

• Flat sample was measured with a reflectometer

– Independent verification of inverse model results
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Test #

Spectral Range (Micrometers)

1.5 – 2.0 2.0 – 3.5 3.0 – 4.0 4.0 – 5.0 5.0 – 10.5 10.5 – 21.0

Spectral Reflectivity

1 0.965 0.969 0.966 0.977 0.982 1.005

2 0.967 0.972 0.971 0.973 0.983 1.01

3 0.965 0.969 0.973 0.977 0.98 0.986

Emissometer Absorptivity 0.028

Steady State Model Absorptivity 0.028



Folded Sample Validation

• Experimental and theoretical results show that a surface 

with any intrinsic absorptivity can achieve αa = 1
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Apparent Emissivity



Theoretical Apparent Emissivity
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• A new experimental approach is necessary to find ϵa

• We will consider an origami surface subjected to uniform 

electrical heating (Pin)
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Apparent Emissivity Experimental Setup

• Experiments were performed in a vacuum chamber 

evacuated to a vacuum of 0.015 Torr

• Surface was heated using Joule heating

• A correction was made for the heating of the bus bars 

and losses in the electrical wires
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Apparent Emissivity Results

• Experimental results are not yet complete

• Modest’s equation will be used to benchmark apparent 

emissivity results (diffuse emitter, specular reflector):

• Modest’s equation can be used for apparent emissivity 

when considering net radiative heat exchange
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Net Radiative Heat Exchange
(Diffuse emitter, specular reflector, collimated/diffuse irradiation)



Variable Surface Area Considerations

• As the surface is compressed:

– The apparent emissivity/absorptivity increase

– The emitting area decreases

• What will be the effect on total radiative heat exchange 

with the surroundings?
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Theoretical Heat Rate
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a a 

• Same energy balance and governing equation as 

apparent emissivity analysis

• For a diffusely emitting, specularly reflecting surface
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Theoretical Heat Rate Results
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Collimated Irradiation Diffuse Irradiation

• Heat rate decreases with decreasing fold angle

• Collimated irradiation doesn’t decrease monotonically



Heat Rate Experimental Setup

• Same setup as used in the apparent emissivity test

• Temperature data collected at three power levels and 

interpolated to find power as a function of fold angle at a 

constant temperature (T = 325 K)
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Experimental Results – Temperature
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• Guys and Ellis found a pressure of 10-5 Torr is necessary 

to eliminate conductive losses

• Our setup is limited to 0.015 Torr

(1963, NASA, Guys and Ellis)



Experimental Results – Power Derivation
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1) Defined a set 

temperature

2) Curve fit 

temperature 

vs. power 

data

3) Evaluated T 

= 325 K at 

each angle 

to find power 

as a function 

of angle
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Experimental Results – Power
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• Net radiative heat exchange for an origami surface as a 

function of cavity angle for a constant T = 325 K

• Heat rate decreases as cavity angle decreases



Conclusions

• Experimental facilities have been developed to find 

radiative properties as a function of cavity angle

• These methods may be used to characterize origami 

folds that cannot be modeled theoretically

• The heat rate decreases as the cavity angle is 

decreased because the angle term approaches zero

• Origami surfaces are capable of varying their apparent 

absorptivity and emissivity from very low (0.028) to unity
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Future Work

• Surfaces that maintain a constant projected surface area 

should be explored.

• Investigate 2D and 3D origami surfaces

• Characterize spectral properties using FTIR

• Maintain the temperature of an origami surface through 

actuation under varying irradiation conditions
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